Source code for pylbo.utilities.datfiles.file_reader

from __future__ import annotations

from os import PathLike
from typing import BinaryIO

import numpy as np
from pylbo._version import VersionHandler
from pylbo.utilities.datfiles.header import LegolasHeader
from pylbo.utilities.datfiles.header_legacy import LegolasLegacyHeader
from pylbo.utilities.datfiles.istream_reader import (
    read_complex_from_istream,
    read_float_from_istream,
    read_int_from_istream,
    read_mixed_from_istream,
    read_string_from_istream,
)
from pylbo.utilities.logger import pylboLogger
from pylbo.utilities.toolbox import transform_to_list, transform_to_numpy


[docs] class LegolasFileReader: def __init__(self, datfile: PathLike, byte_order: str = "native"):
[docs] self._byte_order = byte_order
[docs] self.datfile = datfile
with open(self.datfile, "rb") as istream: istream.seek(0) self.legolas_version = self._read_legolas_version(istream) self._offset = istream.tell()
[docs] def _read_legolas_version(self, istream: BinaryIO) -> VersionHandler: version_name = read_string_from_istream(istream, length=len("legolas_version")) if version_name == "legolas_version": # formatted version is character of length 10 version = read_string_from_istream(istream, length=10) elif version_name == "datfile_version": # old numbering, single integer version = f"0.{str(read_int_from_istream(istream))}.0" else: # very old numbering istream.seek(0) version = "0.0.0" return VersionHandler(version)
[docs] def get_header(self) -> LegolasHeader: with open(self.datfile, "rb") as istream: istream.seek(self._offset) if self.legolas_version < "2.0": return LegolasLegacyHeader(istream, self.legolas_version) else: return LegolasHeader(istream, self.legolas_version)
[docs] def read_grid(self, header: LegolasHeader) -> np.ndarray: with open(self.datfile, "rb") as istream: grid = read_float_from_istream( istream, amount=header["gridpoints"], offset=header["offsets"]["grid"] ) return np.asarray(grid, dtype=float)
[docs] def read_gaussian_grid(self, header: LegolasHeader) -> np.ndarray: with open(self.datfile, "rb") as istream: grid = read_float_from_istream( istream, amount=header["gauss_gridpoints"], offset=header["offsets"]["grid_gauss"], ) return np.asarray(grid, dtype=float)
[docs] def read_ef_grid(self, header: LegolasHeader) -> np.ndarray: with open(self.datfile, "rb") as istream: grid = read_float_from_istream( istream, amount=header["ef_gridpoints"], offset=header["offsets"]["ef_grid"], ) return np.asarray(grid, dtype=float)
[docs] def read_equilibrium_arrays(self, header: LegolasHeader) -> dict: arrays = {} with open(self.datfile, "rb") as istream: istream.seek(header["offsets"]["equilibrium_arrays"]) for name in header["equilibrium_names"]: arrays[name] = np.asarray( read_float_from_istream(istream, amount=header["gauss_gridpoints"]), dtype=float, ) return arrays
[docs] def read_eigenvalues(self, header: LegolasHeader) -> np.ndarray: with open(self.datfile, "rb") as istream: eigenvalues = read_complex_from_istream( istream, amount=header["nb_eigenvalues"], offset=header["offsets"]["eigenvalues"], ) # ensure we have a list, also for 1 eigenvalue return np.asarray(transform_to_list(eigenvalues), dtype=complex)
[docs] def read_eigenvectors(self, header: LegolasHeader) -> np.ndarray: with open(self.datfile, "rb") as istream: offsets = header["offsets"] eigvec_length = offsets["eigenvector_length"] nb_eigvecs = offsets["nb_eigenvectors"] eigenvectors = read_complex_from_istream( istream, amount=eigvec_length * nb_eigvecs, offset=offsets["eigenvectors"], ) return np.reshape( np.asarray(eigenvectors, dtype=complex), (eigvec_length, nb_eigvecs), order="F", )
[docs] def read_residuals(self, header: LegolasHeader) -> np.ndarray: with open(self.datfile, "rb") as istream: residuals = read_float_from_istream( istream, amount=header["offsets"]["nb_residuals"], offset=header["offsets"]["residuals"], ) return np.asarray(residuals, dtype=float)
[docs] def read_matrix_A( self, header: LegolasHeader ) -> tuple[np.ndarray, np.ndarray, np.ndarray]: with open(self.datfile, "rb") as istream: hdr = read_mixed_from_istream( istream, fmt=(2 * "i" + 2 * "d"), amount=header["nonzero_A_elements"], offset=header["offsets"]["matrix_A"], ) rows, cols, reals, imags = hdr[::4], hdr[1::4], hdr[2::4], hdr[3::4] vals = [complex(x, y) for x, y in zip(reals, imags)] return ( np.asarray(rows, dtype=int), np.asarray(cols, dtype=int), np.asarray(vals, dtype=complex), )
[docs] def read_matrix_B( self, header: LegolasHeader ) -> tuple[np.ndarray, np.ndarray, np.ndarray]: with open(self.datfile, "rb") as istream: hdr = read_mixed_from_istream( istream, fmt=(2 * "i" + "d"), amount=header["nonzero_B_elements"], offset=header["offsets"]["matrix_B"], ) rows, cols, vals = hdr[::3], hdr[1::3], hdr[2::3] return ( np.asarray(rows, dtype=int), np.asarray(cols, dtype=int), np.asarray(vals, dtype=float), )
[docs] def read_eigenfunction(self, header: LegolasHeader, ev_index: int) -> dict: # extract corresponding index in the array with written indices ef_index = self._get_ef_index(header, ev_index) if ef_index is None: return None return self._read_eigenfunction_like( header, offset=header["offsets"]["ef_arrays"], ef_index=ef_index, state_vector=header["ef_names"], )
[docs] def read_derived_eigenfunction(self, header: LegolasHeader, ev_index: int) -> dict: ef_index = self._get_ef_index(header, ev_index) if ef_index is None: return None return self._read_eigenfunction_like( header, offset=header["offsets"]["derived_ef_arrays"], ef_index=ef_index, state_vector=header["derived_ef_names"], )
[docs] def _read_eigenfunction_like( self, header: LegolasHeader, offset: int, ef_index: int, state_vector: np.ndarray, ) -> dict: state_vector = transform_to_numpy(state_vector) eigenfunctions = {} with open(self.datfile, "rb") as istream: for name_idx, name in enumerate(state_vector): # get offset of particular eigenfunction block block_offset = name_idx * header["offsets"]["ef_block_bytesize"] # get offset of requested eigenfunction in block ef_offset = ef_index * header["offsets"]["ef_bytesize"] eigenfunctions[name] = np.asarray( read_complex_from_istream( istream, amount=header["ef_gridpoints"], offset=offset + block_offset + ef_offset, ), dtype=complex, ) return eigenfunctions
[docs] def _get_ef_index(self, header: LegolasHeader, ev_index: int) -> int: # extract eigenfunction index from the array with written indices try: ((ef_index,),) = np.where(header["ef_written_idxs"] == ev_index) except ValueError: pylboLogger.warning("selected eigenvalue has no eigenfunctions!") return None return ef_index