Source code for pylbo.visualisation.modes.cartesian_3d

from __future__ import annotations

import numpy as np
from matplotlib import pyplot as plt
from matplotlib.axes import Axes
from matplotlib.cm import ScalarMappable
from matplotlib.figure import Figure
from pylbo.visualisation.modes.cartesian_2d import CartesianSlicePlot2D
from pylbo.visualisation.modes.mode_data import ModeVisualisationData


[docs] class CartesianSlicePlot3D(CartesianSlicePlot2D): """ Class for handling Cartesian 3D plots of the eigenmode solution. Parameters ---------- data : ModeVisualisationData The data for the visualisation. u2 : np.ndarray The :math:`y` coordinate of the eigenmode solution. u3 : np.ndarray The :math:`z` coordinate of the eigenmode solution. time : float The time at which the eigenmode solution is calculated. slicing_axis : str The axis along which the eigenmode solution is sliced. figsize : tuple[int, int] The size of the figure. vmin : float The minimum value of the colourbar. If None, the minimum value of the solution is used. vmax : float The maximum value of the colourbar. If None, the maximum value of the solution is used. """ def __init__( self, data: ModeVisualisationData, u2: np.ndarray, u3: np.ndarray, time: float, slicing_axis: str, figsize: tuple[int, int], vmin: float = None, vmax: float = None, **kwargs, ) -> None: if figsize is None: figsize = (8, 8) if slicing_axis == "y": raise NotImplementedError("3D slicing is not implemented for y-axis.") super().__init__(data, u2, u3, time, slicing_axis, figsize, False, **kwargs)
[docs] self.vmin = np.min(self._solutions) if vmin is None else vmin
[docs] self.vmax = np.max(self._solutions) if vmax is None else vmax
[docs] self._view = [None] * len(self._u3)
self.set_contours(levels=25, fill=True)
[docs] def _create_figure_layout(self, figsize: tuple[int, int]) -> tuple[Figure, dict]: fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111, projection="3d") for side in ("top", "bottom", "left", "right"): ax.spines[side].set_color("none") ax.grid(False) for attr in "xyz": getattr(ax, f"{attr}axis").set_pane_color((1.0, 1.0, 1.0, 1.0)) return fig, {"view": ax}
[docs] def _create_cbar_axes(self, width: float) -> Axes: box = self.ax.get_position() position = (box.x0, box.height + 0.02 + 0.1) dims = (box.width, width) return self.fig.add_axes([*position, *dims])
[docs] def _validate_u2(self, u2: np.ndarray, *args, **kwargs) -> np.ndarray: return u2
[docs] def _validate_u3(self, u3: np.ndarray, *args, **kwargs) -> np.ndarray: return u3
[docs] def set_plot_arrays(self) -> None: self.solution_shape = (len(self._u1), len(self._u2)) for ef, omega in zip(self.data.eigenfunction, self.data.omega): data = np.broadcast_to(ef, shape=reversed(self.solution_shape)).transpose() self.ef_data.append({"ef": data, "omega": omega}) x_2d, y_2d = np.meshgrid(self.data.ds.ef_grid, self._u2, indexing="ij") self.u1_data = x_2d self.u2_data = y_2d self.u3_data = self._u3 self.time_data = self._time
[docs] def calculate_mode_solution( self, efdata: np.ndarray, u2: np.ndarray, u3: np.ndarray, t: np.ndarray ) -> np.ndarray: solutions = np.zeros(shape=(*self.solution_shape, len(u3))) for i, z in enumerate(u3): for efdata in self.ef_data: solutions[..., i] += super().calculate_mode_solution(efdata, u2, z, t) return solutions
[docs] def draw_eigenfunction(self) -> None: pass
[docs] def draw_solution(self) -> None: level_kwargs = {} if self._contour_levels is not None: level_kwargs["levels"] = self._contour_levels for i, z in enumerate(self._u3): self._view[i] = self._contour_recipe( self.u1_data, self.u2_data, self.solutions[..., i], zdir="z", offset=z, alpha=max(0.4, 1 - i * 0.1), vmin=self.vmin, vmax=self.vmax, **level_kwargs, **self._kwargs, ) self.cbar = self.fig.colorbar( ScalarMappable(norm=self._view[0].norm, cmap=self._view[0].cmap), cax=self.cbar_ax, orientation="horizontal", ) self.ax.set_xlim(np.min(self._u1), np.max(self._u1)) self.ax.set_ylim(np.min(self._u2), np.max(self._u2)) self.ax.set_zlim(np.min(self._u3), np.max(self._u3))
[docs] def add_axes_labels(self) -> None: super().add_axes_labels() self.ax.set_zlabel("z")
[docs] def draw_textboxes(self) -> None: self.t_txt = self.ax.text2D( 0.9, 0.9, f"t = {self._time:.2f}", fontsize=15, transform=self.ax.transAxes, ha="center", bbox=dict(facecolor="grey", alpha=0.2, boxstyle="round", pad=0.2), )
[docs] def _clear_contours(self) -> None: for view in self._view: for coll in view.collections: try: coll.remove() except ValueError: pass
[docs] def _update_view(self, updated_solution: np.ndarray) -> None: super()._update_contour_plot(updated_solution)
[docs] def _update_view_clims(self, solution: np.ndarray) -> None: if self.update_colorbar: self.vmin, self.vmax = np.min(solution), np.max(solution)
[docs] def _set_t_txt(self, t): self.t_txt.set_text(f"t = {t:.2f}")