Source code for pylbo.visualisation.modes.cylindrical_3d

from __future__ import annotations

import numpy as np
from matplotlib.cm import ScalarMappable
from pylbo.visualisation.modes.cartesian_3d import CartesianSlicePlot3D
from pylbo.visualisation.modes.mode_data import ModeVisualisationData


[docs] class CylindricalSlicePlot3D(CartesianSlicePlot3D): """ Class for handling cylindrical 3D plots of the eigenmode solution. Parameters ---------- data : ModeVisualisationData The data for the visualisation. u2 : np.ndarray The :math:`\\theta` coordinate of the eigenmode solution. u3 : np.ndarray The :math:`z` coordinate of the eigenmode solution. time : float The time at which the eigenmode solution is calculated. slicing_axis : str The axis along which the eigenmode solution is sliced. figsize : tuple[int, int] The size of the figure. vmin : float The minimum value of the colourbar. If None, the minimum value of the solution is used. vmax : float The maximum value of the colourbar. If None, the maximum value of the solution is used. """ def __init__( self, data: ModeVisualisationData, u2: np.ndarray, u3: np.ndarray, time: float, slicing_axis: str, figsize: tuple[int, int], vmin: float = None, vmax: float = None, **kwargs, ) -> None: if figsize is None: figsize = (8, 8) if slicing_axis == "theta": raise NotImplementedError( "3D slicing is not implemented for a theta slice." ) super().__init__(data, u2, u3, time, slicing_axis, figsize, **kwargs)
[docs] self.vmin = np.min(self._solutions) if vmin is None else vmin
[docs] self.vmax = np.max(self._solutions) if vmax is None else vmax
self.set_contours(levels=25, fill=True)
[docs] def set_plot_arrays(self) -> None: self.solution_shape = (len(self._u1), len(self._u2)) for ef, omega in zip(self.data.eigenfunction, self.data.omega): data = np.broadcast_to(ef, shape=reversed(self.solution_shape)).transpose() self.ef_data.append({"ef": data, "omega": omega}) r_2d, theta_2d = np.meshgrid(self.data.ds.ef_grid, self._u2, indexing="ij") self.u1_data = r_2d self.u2_data = theta_2d self.u3_data = self._u3 self.time_data = self._time
[docs] def draw_solution(self) -> None: level_kwargs = {} if self._contour_levels is not None: level_kwargs["levels"] = self._contour_levels for i, z in enumerate(self._u3): self._view[i] = self._contour_recipe( self.u1_data * np.cos(self.u2_data), self.u1_data * np.sin(self.u2_data), self.solutions[..., i], zdir="z", offset=z, alpha=max(0.4, 1 - i * 0.1), vmin=self.vmin, vmax=self.vmax, **level_kwargs, **self._kwargs, ) self.cbar = self.fig.colorbar( ScalarMappable(norm=self._view[0].norm, cmap=self._view[0].cmap), cax=self.cbar_ax, orientation="horizontal", ) xmax = np.max(self._u1) self.ax.set_xlim(-xmax, xmax) self.ax.set_ylim(-xmax, xmax) self.ax.set_zlim(np.min(self._u3), np.max(self._u3))
[docs] def get_view_xlabel(self) -> str: return "x"
[docs] def get_view_ylabel(self) -> str: return "y"