Source code for pylbo.visualisation.modes.mode_figure

from __future__ import annotations

from typing import Union

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from pylbo.utilities.logger import pylboLogger
from pylbo.visualisation.figure_window import FigureWindow
from pylbo.visualisation.modes.mode_data import ModeVisualisationData
from pylbo.visualisation.utils import add_axis_label, ensure_attr_set


[docs] class ModeFigure(FigureWindow): """ Main class to hold the figure, axes and colorbar for eigenmode visualisations. Parameters ---------- figsize : tuple[int, int] The size of the figure. data : ModeVisualisationData The data used for eigenmode visualisations. Attributes ---------- fig : matplotlib.figure.Figure The figure. axes : dict[str, matplotlib.axes.Axes] The axes. cbar : matplotlib.colorbar.Colorbar The colorbar. cbar_ax : matplotlib.axes.Axes The axes for the colorbar. data : ModeVisualisationData Data object containing all data associated with the selected eigenmode. u1_data : np.ndarray
[docs] The data for the :math:`u_1` coordinate.
u2_data : Union[float, np.ndarray] The data for the :math:`u_2` coordinate. u3_data : Union[float, np.ndarray] The data for the :math:`u_3` coordinate. ef_data : list[dict] The data for the eigenfunction. time_data : Union[float, np.ndarray] The data for the time. omega_txt: matplotlib.text.Text The text for the :math:`\\omega` label. k2k3_txt: matplotlib.text.Text The text for the :math:`k_2-k_3` label. u2u3_txt: matplotlib.text.Text The text for the :math:`u_2-u_3` label. t_txt: matplotlib.text.Text The text for the time label. """ def __init__( self, figsize: tuple[int, int], data: ModeVisualisationData, show_ef_panel: bool ) -> None:
[docs] self.cbar = None
[docs] self._cbar_hspace = 0.01
[docs] self._show_ef_panel = show_ef_panel
[docs] self._annotate = True
if figsize is None: figsize = (14, 8) if self._kwargs.get("custom_figure", None) is not None: pylboLogger.info("using user-defined figure and axes") fig, ax = self._kwargs.pop("custom_figure") axes = {"view": ax} self._show_ef_panel = False else: fig, axes = self._create_figure_layout(figsize) super().__init__(fig)
[docs] self.axes = axes
[docs] self.cbar_ax = self._create_cbar_axes(width=0.02)
# Main data object
[docs] self.data = data
# stuff ploted on the view panel
[docs] self._view = None
# textbox objects [setattr(self, f"{val}_txt", None) for val in ("omega", "k2k3", "u2u3", "t")] # data objects [setattr(self, f"{val}_data", None) for val in ("u1", "u2", "u3", "time")]
[docs] self.ef_data = []
[docs] self.solution_shape = None
[ensure_attr_set(self, attr) for attr in ("_u1", "_u2", "_u3", "_time")] self.set_plot_arrays() for attr in ("u1", "u2", "u3", "time"): ensure_attr_set(self, f"{attr}_data") ensure_attr_set(self, "solution_shape") # don't explicitly create an empty array as this may return a broadcasted view
[docs] self._solutions = 0
for efdata in self.ef_data: self._solutions += self.calculate_mode_solution( efdata=efdata, u2=self.u2_data, u3=self.u3_data, t=self.time_data, ) if self.data.add_background: self._solutions += self.data.get_background(self._solutions.shape) pylboLogger.info(f"eigenmode solution shape {self._solutions.shape}")
[docs] def _check_if_number(self, val: float, attr_name: str) -> float: """ Checks if a given value is a number. Parameters ---------- val : float The value to check. attr_name : str The name of the value. Raises ------ ValueError If the value is not a number. """ if not isinstance(val, (int, np.integer, float)): raise ValueError(f"expected a number for {attr_name} but got {type(val)}") return val
[docs] def _check_if_array(self, array: np.ndarray, attr_name: str) -> np.ndarray: """ Checks is a given value is a numpy array. Parameters ---------- array : np.ndarray The value to check. attr_name : str The name of the value. Raises ------ ValueError If the value is not a numpy array. """ if not isinstance(array, np.ndarray): raise ValueError( f"expected a Numpy array for {attr_name} but got {type(array)}" ) return array
[docs] def set_plot_arrays(self) -> None: """ Sets the arrays used for plotting. This should implement setting of :attr:`u1_data`, :attr:`u2_data`, :attr:`u3_data`, :attr:`t_data` and :attr:`ef_data`. """ raise NotImplementedError()
[docs] def calculate_mode_solution( self, efdata: dict, u2: Union[float, np.ndarray], u3: Union[float, np.ndarray], t: Union[float, np.ndarray], ) -> np.ndarray: """ Calculates the mode solution. Parameters ---------- efdata : dict The data for the eigenfunction. This should be a dictionary with the keys ``'ef'`` and ``'omega'``, with ``'ef'``containing the eigenfunction and ``'omega'`` the corresponding eigenvalue. u2 : Union[float, np.ndarray] The data for the :math:`u_2` coordinate. u3 : Union[float, np.ndarray] The data for the :math:`u_3` coordinate. t : Union[float, np.ndarray] The data for the time. Returns ------- np.ndarray The mode solution. """ return self.data.get_mode_solution( ef=efdata["ef"], omega=efdata["omega"], u2=u2, u3=u3, t=t )
@property
[docs] def ax(self) -> Axes: """ Returns ------- matplotlib.axes.Axes Alias for the axes containing the eigenmode solution view. """ return self.axes["view"]
@property
[docs] def solutions(self) -> np.ndarray: """ Returns ------- np.ndarray The solutions for the eigenmode """ return self._solutions
[docs] def draw(self) -> None: self.draw_eigenfunction() self.draw_solution() if self._annotate: self.draw_textboxes() self.add_axes_labels() super().draw()
[docs] def draw_solution(self) -> None: raise NotImplementedError()
[docs] def draw_textboxes(self) -> None: u2u3ax = self.axes.get("eigfunc", None) or self.ax self.add_u2u3_txt(u2u3ax, loc="top right", outside=True) self.add_k2k3_txt(self.ax, loc="bottom left", color="white", alpha=0.5)
[docs] def draw_eigenfunction(self) -> None: """Draws the eigenfunction(s) to the figure.""" ax = self.axes.get("eigfunc", None) if ax is None: return grid = self.data.ds.ef_grid for ef, omega in zip(self.data.eigenfunction, self.data.omega): label = rf"$\omega$ = {omega:.5f}" ef = getattr(self.data.complex_factor * ef, self.data.part_name) ax.plot(grid, ef, lw=2, label=label) ax.axvline(x=0, color="grey", ls="--", lw=1) ax.set_xlim(np.min(grid), np.max(grid)) ax.set_ylabel(self.data._ef_name_latex) ax.legend(loc="best")
[docs] def add_axes_labels(self) -> None: self.ax.set_xlabel(self.get_view_xlabel()) self.ax.set_ylabel(self.get_view_ylabel()) self.cbar.set_label(self.get_view_cbar_label())
[docs] def _create_cbar_axes(self, width: float) -> Axes: """ Creates the axes for the colorbar. Parameters ---------- width : float The width of the colorbar axes. Returns ------- matplotlib.axes.Axes The axes for the colorbar. """ box = self.ax.get_position() # shift main axes to the left to make space self.ax.set_position([box.x0, box.y0, box.width - 2.5 * width, box.height]) # update box to reflect the new position box = self.ax.get_position() position = (box.x0 + box.width, box.y0) dims = (width, box.height) return self.fig.add_axes([*position, *dims])
[docs] def get_view_xlabel(self) -> str: return self.data.ds.u1_str
[docs] def get_view_ylabel(self) -> str: return ""
[docs] def get_view_cbar_label(self) -> str: return rf"{self.data._ef_name_latex}"
[docs] def add_omega_txt(self, ax, **kwargs) -> None: """ Creates a textbox on the axis with the value of the eigenfrequency. Parameters ---------- ax : ~matplotlib.axes.Axes The axes to use for the textbox. **kwargs Additional keyword arguments to pass to :meth:`add_axis_label`. """ if self.omega_txt is None: self.omega_txt = rf"$\omega$ = {self.data.omega:.5f}" add_axis_label(ax, self.omega_txt, **kwargs)
[docs] def add_k2k3_txt(self, ax, **kwargs) -> None: """ Creates a textbox on the figure with the value of the k2 and k3 coordinates. Parameters ---------- ax : ~matplotlib.axes.Axes The axes to use for the textbox. **kwargs Additional keyword arguments to pass to :meth:`add_axis_label`. """ if self.k2k3_txt is None: self.k2k3_txt = "".join( [ f"{self.data.ds.k2_str} = {self.data.k2} | ", f"{self.data.ds.k3_str} = {self.data.k3}", ] ) add_axis_label(ax, self.k2k3_txt, **kwargs)
[docs] def add_u2u3_txt(self, ax, **kwargs) -> None: """ Creates a textbox on the figure with the value of the :math:`u_2-u_3` coordinates. Parameters ---------- ax : ~matplotlib.axes.Axes The axes to use for the textbox. **kwargs Additional keyword arguments to pass to :meth:`add_axis_label`. """ if self.u2u3_txt is None: self.u2u3_txt = "".join( [ rf"{self.data.ds.u2_str} = {self._u2} | ", rf"{self.data.ds.u3_str} = {self._u3}", ] ) add_axis_label(ax, self.u2u3_txt, **kwargs)
[docs] def add_t_txt(self, ax, **kwargs) -> None: pass
[docs] def _create_figure_layout(self, figsize: tuple[int, int]) -> tuple[Figure, dict]: """ Create the figure layout for the visualisation. Two panels are created: the top one for the eigenfunction and the bottom one for the visualisation. Parameters ---------- figsize : tuple[int, int] The size of the figure. Returns ------- fig : ~matplotlib.figure.Figure The figure to use for the visualisation. axes : dict The axes to use for the visualisation. """ fig = plt.figure(figsize=figsize) if not self._show_ef_panel: ax2 = fig.add_subplot() return fig, {"view": ax2} width = 0.75 height_1 = 0.2 height_2 = 0.5 v_space = 0.1 x = (1 - width) / 2 y1 = 1 - height_1 - v_space y2 = v_space # left, bottom, width, height in Figure coordinates ax1 = fig.add_axes([x, y1, width, height_1]) ax2 = fig.add_axes([x, y2, width, height_2]) return fig, {"eigfunc": ax1, "view": ax2}
[docs] def create_animation( self, times: np.ndarray, filename: str, fps: float = 10, dpi: int = 200 ) -> None: """ Creates an animation of the eigenmode solution over a given time interval. Parameters ---------- times : np.ndarray The times at which to create the animation. filename : str The filename of the animation. fps : float The frames per second of the animation. dpi : int The resolution of the animation. """ raise ValueError(f"{self.__class__.__name__} does not support animation.")