This submodule defines a steady Taylor-Couette flow in a cylindrical geometry
where a fluid is confined between two (rotating) coaxial cylinders
(without a magnetic field).
This equilibrium is taken from
Gebhardt, Thomas and Grossman, Siegfried.
"The Taylor-Couette eigenvalue problem with independently rotating cylinders.",
Z. Phys. B 90, 475--490 (1993).
Note
Default values are given by
- k2 = 0
- k3 = 1
- cte_rho0 = 1 : density (constant)
- alpha = 1 : rotational speed of the inner cylinder
- beta = 2 : rotational speed of the outer cylinder
and can all be changed in the parfile.
Variables
Type |
Visibility | Attributes |
|
Name |
| Initial | |
real(kind=dp),
|
private |
|
:: |
h |
|
|
|
real(kind=dp),
|
private |
|
:: |
Rrat |
|
|
|
real(kind=dp),
|
private |
|
:: |
A |
|
|
|
real(kind=dp),
|
private |
|
:: |
B |
|
|
|
real(kind=dp),
|
private |
|
:: |
Tstart |
|
|
|
real(kind=dp),
|
private |
|
:: |
x_start |
|
|
|
real(kind=dp),
|
private |
|
:: |
x_end |
|
|
|
Functions
Arguments
None
Return Value
real(kind=dp)
Arguments
Type |
Intent | Optional | Attributes |
|
Name |
|
real(kind=dp),
|
intent(in) |
|
|
:: |
r |
|
Return Value
real(kind=dp)
Arguments
Type |
Intent | Optional | Attributes |
|
Name |
|
real(kind=dp),
|
intent(in) |
|
|
:: |
r |
|
Return Value
real(kind=dp)
Arguments
Type |
Intent | Optional | Attributes |
|
Name |
|
real(kind=dp),
|
intent(in) |
|
|
:: |
r |
|
Return Value
real(kind=dp)
Arguments
Type |
Intent | Optional | Attributes |
|
Name |
|
real(kind=dp),
|
intent(in) |
|
|
:: |
r |
|
Return Value
real(kind=dp)
Arguments
Type |
Intent | Optional | Attributes |
|
Name |
|
real(kind=dp),
|
intent(in) |
|
|
:: |
r |
|
Return Value
real(kind=dp)
Module Procedures
Arguments
Type |
Intent | Optional | Attributes |
|
Name |
|
type(settings_t),
|
intent(inout) |
|
|
:: |
settings |
|
type(grid_t),
|
intent(inout) |
|
|
:: |
grid |
|
type(background_t),
|
intent(inout) |
|
|
:: |
background |
|
type(physics_t),
|
intent(inout) |
|
|
:: |
physics |
|